Un défi par semaine

Mai 2015, 1er défi

El 1ro mayo 2015  - Escrito por  Ana Rechtman Ver los comentarios (8)
Leer el artículo en  

Nous vous proposons un défi du calendrier mathématique 2015 chaque vendredi et sa solution la semaine suivante.

Semaine 18 :

Placer les nombres de $1$ à $9$ dans les cercles de sorte que chaque nombre à l’intérieur d’un triangle soit la somme des nombres des trois cercles qui l’entourent.

JPEG - 51.9 KB

Solution du 4ème défi d’Avril :

Enoncé

La réponse est $4\sqrt{3}$ cm.

Traçons les segments $[PA]$, $[PB]$ et $[PC]$, qui divisent le triangle $ABC$ en trois triangles $ABP$, $PBC$ et $PCA$ dont les hauteurs mesurent respectivement $1$ cm, $2$ cm et $3$ cm.

PNG - 23.2 KB

Soient $a$ la mesure du côté et $h$ la hauteur du triangle équilatéral $ABC$, alors son aire est égale à $\frac{a\times h}{2}$. D’autre part, l’aire du triangle $ABC$ est égale à la somme des aires des triangles $ABP$, $PBC$ et $PCA$, c’est-à-dire :

$\frac{a\times h}{2} = \frac{a\times 1}{2}+\frac{a\times 2}{2}+\frac{a\times 3}{2}$

$a\times h = a+2a+3a$

$h = 6.$

Ainsi, la hauteur du triangle $ABC$ mesure $6$ cm. Comme le triangle $ABC$ est équilatéral, la hauteur divise ce triangle en deux triangles rectangles dont les côtés mesurent $h$ et $\frac{a}{2}$, et dont l’hypoténuse mesure $a$. Alors, en appliquant le théorème de Pythagore, on a :

$(\frac{a}{2})^2 + 6^2 = a^2$

$\frac{a^2}{4} +36 = a^2$

$\frac{3}{4}a^2 = 36$

$a = \sqrt{48} = 4\sqrt 3.$

Par conséquent, le côté du triangle $ABC$ mesure $4\sqrt 3$ cm.

Post-scriptum :

Calendrier mathématique 2015 - Sous la direction d’Ana Rechtman Bulajich, Anne Alberro Semerena, Radmilla Bulajich Manfrino - Textes : Ian Stewart.
2014, Presses universitaires de Strasbourg. Tous droits réservés.

Article édité par Ana Rechtman

Comparte este artículo

Para citar este artículo:

Ana Rechtman — «Mai 2015, 1er défi» — Images des Mathématiques, CNRS, 2015

Créditos de las imágenes:

Imagen de portada - Makarova Viktoria / SHUTTERSTOCK

Comentario sobre el artículo

Voir tous les messages - Retourner à l'article

  • Mai 2015, 1er défi

    le 4 de mayo de 2015 à 10:12, par Roland Bacher

    Joli défi!

    Je trouve dommage de poster juste la solution! Le plaisir consiste finalement à la trouver (et j’espère que tout le monde a au moins un peu cherché avant de lire les commentaires).

    Par contre, il peut être instructif de décrire la façon dont on a procédé. Dans mon cas, j’ai commencé par regarder le problème modulo 2 (c’est-à-dire en considérant seulement la parité des nombres).

    Parmi les quatre solutions possible modulo 2, il n’y en a qu’une qui fait intervenir 4 nombres pairs. Comme cette solution montre que les trois contributions à 18 sont des
    nombres pairs, on sait qu’il y a 4,6 et 8 au sommets du triangle de somme 18. Maintenant, il n’y a plus qu’à essayer les 6 permutations possibles.

    Répondre à ce message

Dejar un comentario

Foro sólo para inscritos

Para participar en este foro, debe registrarte previamente. Gracias por indicar a continuación el identificador personal que se le ha suministrado. Si no está inscrito/a, debe inscribirse.

Conexióninscribirse¿contraseña olvidada?

La traducción del sitio del francés al castellano se realiza gracias al apoyo de diversas instituciones de matemáticas de América Latina.