Un défi par semaine

Mars 2017, 2e défi

El 10 marzo 2017  - Escrito por  Ana Rechtman Ver los comentarios (9)
Leer el artículo en  

Nous vous proposons un défi du calendrier mathématique 2017 chaque vendredi et sa solution la semaine suivante.

Semaine 10 :

Dix personnes sont assises autour d’une table. Chacun pense à un nombre et le dit à ses deux voisins. Puis chacun dit à voix haute la moyenne des nombres de ses deux voisins. Si les nombres de $1$ à $10$, dans cet ordre, ont été annoncés, quel est le nombre auquel a pensé la personne qui a dit $6$?

Solution du 1er défi de Mars :

Enoncé

La réponse est $1$, $1$, $2$ et $0$.

On sait que dans la dernière boîte, il n’y a pas $1$ boule noire, et comme il y a moins de boules noires que dans la première boîte, on en conclut que dans la dernière boîte, il y a $0$ boule noire et $2$ blanches. Par conséquent, dans la première boîte, deux cas sont possibles: $1$ boule noire et $1$ blanche ou $2$ noires. Comme le nombre écrit sur la boîte est faux, il y a donc $1$ boule noire et $1$ blanche.

Il reste donc $3$ boules noires et $1$ blanche à répartir dans les $2$ boîtes centrales. Une des boîtes centrales doit donc contenir exactement $1$ boule noire. Ce n’est pas la troisième (de gauche à droite) car tous les nombres sont faux. C’est donc la deuxième qui contient exactement une boule noire. Donc les boîtes contiennent $1$, $1$, $2$ et $0$ boules noires.

Post-scriptum :

Calendrier mathématique 2017 - Sous la direction d’Ana Rechtman, Maxime Bourrigan - Textes : Antoine Rousseau et Marcela Szopos.
2016, Presses universitaires de Strasbourg. Tous droits réservés.

Article édité par Ana Rechtman

Comparte este artículo

Para citar este artículo:

Ana Rechtman — «Mars 2017, 2e défi» — Images des Mathématiques, CNRS, 2017

Créditos de las imágenes:

Imagen de portada - JOSEF P. WILLEMS/FANCY / PHOTONONSTOP

Comentario sobre el artículo

Voir tous les messages - Retourner à l'article

  • Mars 2017, 2e défi

    le 10 de marzo de 2017 à 19:42, par Idéophage

    Si on poursuit le raisonnement, on trouve que la personne qui a annoncé 8 avait pensé à 9, et que celle qui a annoncé 10 avait pensé à 1. Contradiction puisqu’on avait supposé au départ qu’elle avait annoncé 1. Il n’y a qu’une seule configuration possible qui est la suivante (ce sont les nombres auxquels ont pensé les personnes, dans l’ordre en commençant par celle ayant dit 1 à haute voix).

    6, -3, -2, 9, 10, 1, 2, 13, 14, 5

    Répondre à ce message

Dejar un comentario

Foro sólo para inscritos

Para participar en este foro, debe registrarte previamente. Gracias por indicar a continuación el identificador personal que se le ha suministrado. Si no está inscrito/a, debe inscribirse.

Conexióninscribirse¿contraseña olvidada?

La traducción del sitio del francés al castellano se realiza gracias al apoyo de diversas instituciones de matemáticas de América Latina.